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Abstract

This paper presents an artificial neural network (ANN) approach to predicting and classify-
ing distribution transformer specific iron losses, i.c., losses per weight unit. The ANN is trained
to learn the relationship of several parameters affecting iron losses. For this reason, the ANN
learning and testing sets are formed using actual industrial measurements, obtained from
previous completed transformer constructions. Data comprise grain oriented steel electrical
characteristics, cores constructional parameters, quality control measurements of cores produc-
tion line and transformers assembly line measurements. It is shown that an average absolute
error of 2.32% has been achieved in the prediction of individual core specific iron losses and an
error of 2.2% in case of transformer specific losses. This is compared with average errors of
5.7% and 4.0% in prediction of specific iron losses of individual core and transformer,
respectively, obtained by the current practice applying the typical loss curve to the same
data. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In an industrial environment, dealing with distribution transformer construction,
accurate prediction of iron losses is an important task, since the latter constitute one
of the main parameters of transformer quality. In addition, accurate estimation of
transformer iron losses protects the manufacturer of paying loss penalties. Alterna-
tively, the transformer is designed at a lower magnetic induction, resulting in increase
of the transformer cost, since more magnetic material is required. In case of wound-
core-type transformers, estimation of iron losses of individual cores is also desired,
since iron losses of some individual cores may significantly diverge from the designed
ones. In this case, corrective actions (e.g., re-annealing of cores) should take place,
which are both time and money consuming.

Due to the above-mentioned reasons, both the individual core and the transformer
specific iron losses need to be accurately estimated. However, satisfactory prediction of
iron losses can be achieved only if various parameters, involved in the process, both
qualitative and quantitative, are taken into consideration. Instead, in the current practice,
the loss curve is used, i.., only the influence of the rated magnetic induction on iron losses,
for each specific type of magnetic material, is considered. This is dictated by the fact that
there is no simple and analytical relationship expressing the effect of the aforementioned
parameters on the transformer iron losses. In the industrial environment considered,
several statistical measurements have shown that a maximum absolute relative error of
approximately 20%, in relation to the specific iron losses obtained by the loss curve, is
usually observed. Reduction of this error requires better prediction of transformer losses.

Artificial neural networks (ANNSs) [1,5,14] with their highly non-linear capabilities
and adaptive learning properties can be very useful in such applications since all the
involved parameters affect the final product with a highly and complex non-linear
way. ANNs have been successfully applied in power systems, such as load forecasting
[11,13,16], and security assessment [15,18,21]. In this paper an artificial neural-
network-based scheme is proposed for determining individual core and transformer
specific iron losses. For this purpose, multilayer feedforward neural networks are
used, trained with the variant backpropagation algorithm described in Section 3.

For ANN architecture, the choice of features variables (signals given to the neurons
in the input layer) is of primary importance. A learning set (LS) is required in order to
train the ANN. The LS consists of a large number of training samples, covering all
possible transformer designs, in order to ensure its representativity. Each training
sample is characterised by a vector of feature variables, called attributes. The perfor-
mance and the reliability of ANN are evaluated with independent testing sets (TS)
which have the same structure as the LS, i.e., they are generated in exactly the same
way, but comprise different samples of transformer designs. A validation data set is
also used to improve network generalisation.

This paper is organised as follows: basic terms of designing wound core distribution
transformers are presented in Section 2, while a short description of the adopted ANN
methodology is given in Section 3. The applications of neural networks to predicting
and classifying of specific iron losses and the obtained results are described in
Section 4. Conclusions are finally presented in Section 5.
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2. Wound core distribution transformer iron losses

Three-phase transformers are divided into shell and core type; in first type, the
magnetic circuit is a shell encircling the windings while in second type a core
surrounded by the windings. Another transformer classification is based on the way of
stacking laminations. Accordingly, two basic types of cores can be produced [2]; the
stacked and wound cores. In stacked cores lamination layers are placed so that the
gaps between lamination ends of one layer overlap with the lamination in the next
layer (Fig. 1). On the other hand, in wound cores, laminations are wound into a core
shape from cut strips (Figs. 2 and 3).

In the design considered, the magnetic circuit is of the shell type and the cores of
wound type. The assembled active part is shown in Fig. 2.

The production of wound core distribution transformer includes, at the first stage,
the slitting of the raw material into bands of standard width. Then, the slit sheets are
cut to pre-determined lengths and are wound on a circular mandrel. After that,
a suitable press gives a rectangular shape to the circular core. However, the previously
described process significantly deteriorates the core characteristics and especially its
physical and electrical properties. To restore these properties, annealing follows at
temperatures in a range of 760-860°C in a protective environment containing pure
dry nitrogen mixed with hydrogen up to 2%.

The annealing cycle adopted is divided into four phases: starting and heating up
phase (to avoid oxidation and to normally achieve the temperature of 825°C), soaking
phase (to achieve homogeneous temperature distribution for all cores), slow cooling
phase (to slowly cool the load for avoiding the development of internal stresses in the
cores) and fast cooling phase (for reduction of the temperature to 380°C, so as to avoid
oxidation of cores, when they are exposed to the natural environment).
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Fig. 1. Stacked core.
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Fig. 2. Assembled active part of wound core distribution transformer.
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Fig. 3. Wound core constructional parameters.

In contrast to production of the stacked cores, wound cores present the following
additional difficulties: (a) air gaps may diverge due to the tolerances of the machine
performing the cutting and winding of sheets and due to difficulties in the processing
of the magnetic material (slide), (b) the desirable dimensions of wound cores cannot
accurately be obtained as in stacked cores, (c) core formation may deteriorate the
magnetic material insulation and (d) homogeneous temperature distribution is hard
to be obtained during the annealing procedure.
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To construct a three-phase distribution transformer, two small individual cores
(width of core window equal to F1) and two large individual cores (width of core
window equal to F2) should be assembled (Fig. 2). The width F2 is in general twice F1.
The core constructional parameters are shown in Fig. 3.

The theoretical iron losses, W1 (W?2), of the small (large) individual core, are
given by

W1=WPK;+* CTW1 forthe small cores, (1)
W2 =WPK,« CTW?2 for the large cores, (2

where W PK, are the theoretical individual core specific iron losses at the rated
magnetic induction (Fig. 4) and CTW 1 (CTW?2)is the theoretical weight of the small
(large) core as defined in [4]. In the industrial environment considered, the maximum
absolute relative error between theoretical and actual weight have been found to be
approximately 1.5%.

Consequently, the theoretical total iron losses, W1, (in Watt), of the four indi-
vidual cores are given by the following equation:

Wl =2+ (W1+ W2). (3)
The theoretical iron losses of the three-phase transformer, TF Losses, are
TFLosses = WPK; « CTW, 4)

where W PK ; are the theoretical transformer specific iron losses at the rated magnetic
induction, also obtained from Fig. 4 and CTW is the theoretical total weight of
transformer.
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Fig. 4. Typical loss curve.
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3. The neural network methodology

In case of predicting transformer iron losses, there is no simple relationship among
the parameters involved in the process. Neural networks due to their highly non-
linear capabilities and universal approximation properties can be very useful in such
applications [5]. For this reason, they have become a topic of extensive research in
recent years for applications in areas such as power systems, image processing,
machine vision, medical imaging, face/object recognition or detection [3,7,13,18,21].

In this paper, multilayer feedforward neural networks are proposed as an effective
tool for both predicting and classifying individual core and transformer specific iron
losses. Various learning algorithms, such as variants of backpropogation [8] or the
LVQ [5] are used to train the network based on a proper learning set comprising
measurements during transformer production. The NNET package [12] has been
used for this purpose. After the training procedure the network is able to learn
(generalise) the input—output relationship and thus it can predict or classify iron losses
to any input vector outside the training set.

However, good generalisation depends on the network structure. In particular,
small size networks are not able to approximate complicated input—output relation-
ships, since they are not sufficient neurons to implement all possible input—output
relations. On the other hand, recent studies on learning versus network generalisation,
including the VC dimension [20], indicate that an unnecessarily large network size
heavily deteriorates the network performance outside the learning set. A variety of
methods have been proposed in the literature for estimating the appropriate network
size. Examples include pruning [17], constructive techniques [9], regularisation
methods or modular and hierarchical networks [5]. In our approach we adopt
a backpropogation variant [8] in a constructive framework [7] which begins with
a small size network and subsequently adds neurons to improve the network perfor-
mance. A validation data set has been also used during training to control learning
with respect to generalisation ability of the network. Further improvement of the
network performance to non-stationary data can be achieved by modifying the
learning algorithm as described in [3].

4. Prediction and classification of specific iron losses with neural networks

In this section results from the application of ANNs for predicting and classifying
individual core and transformer specific iron losses are presented. Prediction aims at
estimating the actual specific iron losses, while classification at categorising the iron
losses to one of, say p, available classes.

In the industry, it is usual to construct a transformer, whose cores have been
produced under different conditions than the ones assumed by the design engineers, e.g.,
using magnetic material from different suppliers, same supplier but different specific
losses of the magnetic material, different annealing conditions or quality of winding. In
this case, the actual specific iron losses can significantly deviate from the theoretical ones.
Consequently, the final product does not fulfil the guaranteed losses to the customers.
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Moreover, in some cases it is sufficient to simply classify whether the final product is
of acceptable quality. For example, transformers are constructed based on different
sheets of magnetic material whose specific losses are varied within some limits.
Furthermore, classification is also desired for determining what is the effect on iron
losses of changing one or more parameters involved in the manufacturing process
(e.g., annealing conditions). In all the aforementioned cases it is preferable to check if
iron losses are within the limits defined by the international standards and if they are
in accordance with the guaranteed to the customer iron losses, rather than predicting
accurately their value.

The performance of the neural network structure in both applications is compared
with that obtained by the current practice of using the typical loss curve.

4.1. Specific iron losses of individual cores

In case of individual cores, nine attributes have been selected and used as the input
vector of the multilayer feedforward neural network. The selection of these attributes
was based on extensive research and transformer designers’ experience. These at-
tributes correspond to parameters which actually affect the iron losses of the indi-
vidual cores. In particular, the impact of the annealing cycle, the divergence of the
actual core weight from the theoretical value, the size of core and the quality of core
magnetic material are taken into consideration as elements of the network input
vector. Six attributes have been investigated corresponding to the annealing process,
depicted in Table 1. The other three attributes are the actual over theoretical core
weight ratio (ATTRY7), specific losses (W/Kg at 15000 Gauss) of core magnetic
material (ATTRS) as well as the size of core (e.g., small or large core) (ATTRDY).

In order to take into account all the combinations of the six attributes with two
values (Low and High), 32 experiments are required. However, all these combinations
are time consuming and therefore reduction of the implemented experiments is
achieved through the statistical design of experiments method (SDE). According to
SDE [10,19] the parameters are varied at the same time in a systematic way, assuring
the reliable and independent study of the impact and interaction of all the main
parameters in the production procedure. This means that only some representative
experiments can characterise the process and these are taken into account during the

Table 1
“Annealing” attributes

Symbol Attribute name Low value (L) High value (H)
ATTR1 Annealing final temperature 825°C 855°C

ATTR2 Temperature rising time 3h 4h

ATTR3 Furnace opening temperature 250°C 350°C

ATTR4 Duration of constant temperature 2h 3h

ATTRS Position of core in the furnace Down Up

ATTRG6 Protective atmosphere 100% N, mixture of 98% N, and 2% H,
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Table 2
Conditions of the various annealing tests

Annealing test Nb

1 2 3 4 5 6 7 8
ATTR1 L H H L L H H L
ATTR2 L L H H H H L L
ATTR3 L H H L H L L H
ATTR4 L L H H L L H H
ATTRS H L H L H L H L
ATTR6 H H H H L L L L

network training phase. In our approach only eight experiments out of 32 were
required. The parameters characterising each of the eight tests are shown in Table 2. It
can be seen that, due to the symmetric property, the four experiments are carried out
with low value of each attribute while the other four with high value.

All tests were done using the same 160 kVA transformer design and the same
supplier of cores magnetic material. The magnetic steel was of grade M3, according to
USA AISI, 1983, with thickness 0.23 mm. For every one of the eight tests, 96 (48 small
and 48 large) cores were constructed. It should be noticed that all cores were annealed
at the same furnace. 768 samples were collected for the creation of the learning and
testing sets. The 3/4 (576) of them were used as learning set and the rest (192) as testing
one. Moreover, 1/4 (144) of the samples of the learning set were used as validation set
during learning to avoid over-training problems [5].

4.1.1. Prediction problem

In the prediction problem, a multilayer feedforward neural network structure with
one output has been used while the input neurons are equal to the number of
attributes (9). The network output corresponds to the value of the specific iron losses.
After training the ANN, its reliability is evaluated based on the average absolute
relative error providing using data of the testing set

1 actual specific losses — predicted specific losses
Error=— I p p ' P l £ 100%. (5)
for all N actual specific losses
samples

Table 3 illustrates the network performance or equivalently the percentage of
prediction error for several network structures. It is observed that a network size
consisting of one hidden layer and small number of neurons is the most adequate.
Instead, the use of many neurons leads to an increase of the prediction error due to the
unnecessarily large network size.

Fig. 5 presents the fractile diagram or the Q—Q plot (quantile—quantile) [6] of the
specific iron losses. According to this method the data of real specific iron losses are
plotted versus the predicted ones. Perfect prediction lies on a line of 45° slope. It is
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Table 3

Error (%) of individual core specific iron losses prediction

Nb Neurons in hidden layer 1 Neurons in hidden layer 2 Error (%)
1 100 50 2.56

2 100 20 2.39

3 20 0 2.52

4 15 0 2.32

Prediction of individual core specific iron losses
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Fig. 5. Prediction of individual core specific iron losses using the typical loss curve (current practice) and
the artificial neural network method.

observed that, the prediction of the individual core specific iron losses, based only on
rated magnetic induction and ignoring all the other parameters, provides a constant
(equal to 0.78 W/Kg) estimate for all samples belonging to the testing set. This occurs
since only a unique loss curve is used for each type of magnetic material. Therefore, it
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significantly diverges from the line of 45°, providing an erroneous prediction espe-
cially at large or small actual W/Kg values in a range from 0.5925 to 0.9433 W/Kg. On
the contrary, the proposed ANN method is able to accurately estimate the iron losses
of individual cores for all the testing samples, due to the neural network learning
capabilities. The maximum absolute relative error is 31.6% for the current practice,
while the respective error in the ANN method is 5%. The average error is 5.7% for the
current practice and 2.32% for the ANN method. It is observed that the proposed
neural network architecture gives much better results as far as the mean absolute error
and the worst case error, as indicated by the maximum relative error, are concerned.

4.1.2. Classification problem

In this framework the specific iron losses are divided into two classes. The first class,
say Class 1, corresponds to iron losses less than 0.78 W/Kg (theoretical specific iron
losses for the examined design), while the second class, say Class 2, corresponds to iron
losses greater than or equal to this value. Thus, individual cores belonging to Class 1
are of better quality than the theoretical expected while cores belonging to Class 2 are
of worse quality. Since we investigate individual cores and a transformer consists of
four cores, the performance of each of them partially affects the transformer iron losses
and thus partition of individual core losses into two classes is quite satisfactory.

Table 4 illustrates the proportion that both Classes 1 and 2 occupy in the learning
and testing sets. It can be seen that Class 2 comprises almost twice the samples of
Class 1 since in industry most of the cores present actual specific iron losses greater
than the theoretical ones. In this experiment the network output consists of two
neurons each of them corresponds to one of the two available classes. The input layer
neurons are also nine since the same attributes are used as input elements, while the
neurons of the one hidden layer are again 15, as in the previous prediction problem.
After the neural network training its reliability is evaluated using the 192 samples of
the testing set. In particular, it is found that 88% (59 out of 67) of the samples
belonging to Class 1 have been correctly classified and 93% (116 out of 125) of
samples belonging to Class 2. It is also observed that Class 2 presents higher
classification success rate than Class 1 due to the fact that Class 2 contains more
representatives than Class 1. The total classification success rate is 175/192 or 91%.

Table 4
Partition of the learning and testing set in two classes

Learning set Testing set
Class Measurement sets Percentage (%) Measurement sets Percentage (%)
1 192 33.33 67 34.90
2 384 66.67 125 65.10

Total 576 100.00 192 100.00
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4.2. Transformer specific iron losses

As in Section 4.1, several attributes have been used in order to predict or to classify
the transformer specific iron losses of wound core distribution transformers. However,
in this case different attributes have been selected, since at the transformer level
geometrical characteristics are of primary importance and the individual core specific
iron losses are known from measurements. The attributes fed to the neural network
structure in case of the prediction/classification of transformer specific iron losses are
shown in Table 5. The attributes ATTRS through ATTRS are core constructional
parameters shown in Fig. 3.

The learning and testing sets consist of 2595 samples. 1945 of them are used as
training data in the learning process of neural network, while the rest (650) as testing
data. As validation set we have used the 1/4 of the samples of learning set. Each of the
data comprises nine input variables (ATTR1 to ATTRY).

4.2.1. Prediction problem

As in individual cores, the network output in the prediction experiment consists of
one neuron indicating the prediction of the transformer specific iron losses. Table 6
presents the percentage of the error prediction using different network sizes. It is
observed that the proper size comprises a neural network with one hidden layer and
a small number of neurons (20).

Table 5
Attributes for the problem of transformer total specific iron losses

Symbol Attribute name
ATTRI1 Ratio of actual over theoretical total iron losses of the four individual cores
ATTR2 Ratio of actual over theoretical total weight of the four individual cores
ATTR3 Magnetic material average specific losses of the four individual cores
ATTR4 Rated magnetic induction, B
ATTRS Thickness of core leg, E,
ATTR6 Width of core leg, D
ATTR7 Height of core window, G
ATTRS Width of core window, F1
ATTRY Transformer volts per turn
Table 6

Error (%) of transformer total iron losses prediction

Nb Neurons in hidden layer 1 Neurons in hidden layer 2 Error (%)
1 100 50 2.31
2 100 20 2.24

3 20 0 2.20
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Prediction of transformer specific iron losses
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Fig. 6. Prediction of transformer specific iron losses using the typical loss curve (current practice) and the
artificial neural network method.

Fig. 6 presents the Q—Q plot for the transformer specific iron losses. The case of
current practice has been estimated according to the typical loss curve. Instead of the
individual core experiment of Section 4.1 where only one 160 kVA transformer design
is used, in the transformer prediction problem several designs and thus rated magnetic
inductions are used. In the same plot, the prediction results of the neural network
proposed scheme is shown. It is observed that, on average, the neural network
prediction gives more accurate results in the sense that they are closest to the optimal
line of 45° slope. In particular, the current method shows a maximum absolute relative
error of 19.2% and average 4.0% while the proposed ANN method errors of 4.9%
and 2.2%, respectively. It is observed, as in case of individual cores, that ANN
performs better than the conventional method in both average and worst case error.

4.2.2. Classification problem
As in individual core, classification of transformer specific iron losses into two
classes is considered. The neural network architecture is the same as in prediction
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problem case apart from the network output where two neurons are used, one
indicating Class 1 and the other Class 2. One transformer is considered that it belongs
to Class 1 if its actual specific iron losses are less than its theoretical expected ones
(calculated by the loss curve), otherwise it belongs to Class 2. Based on the results of
the classification experiment of the testing set a success rate of 91% (198 out of 218
samples) for Class 1 and 93% (402 out of 432) for Class 2 is observed. The total
classification success rate is 92.3%.

5. Conclusions

In this paper, artificial neural networks are applied for the prediction and classifica-
tion of individual core and also of transformer specific iron losses. The basic steps in
the application of the method, like the generation of the learning and testing sets, the
selection of candidate attributes and the derivation of the appropriate ANN struc-
tures are presented. The average absolute relative error for the prediction of individual
core specific iron losses is 2.32%, while the average absolute relative error for the
prediction of transformer specific iron losses is 2.2%. If two classes are used, the total
classification success rate is 91% for the individual core and 92% for the transformer.
It is shown that with the LS and TS used and for the selected candidate attribute sets,
the ANN method is very suitable for prediction and classification of individual core
and also of transformer specific iron losses.
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